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PERTUBBAT ION ThEORY FOR LINEAR ELECTROELASTIC EQUATIONS
FOR SMALL FIELDS SUPERPOSED ON A BIAS

H.P. Tiersten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics +

Rensselaer Polytechnic Institute
Troy, New York 12181

IIBS TRACT

A perturbation formulation of the equations of linear piezoelectricity
for small f ields superposed on a bias is obtained from a Green ’s function

representation. It is shown that the resulting equation for the first per-

turbation of the eigenvalue may be obtained without the use of a Green’s

tensor or a complete set of orthogonal eigensolutions . Since the bias enters

the constitutive equations, the boundary conditions contain perturbation ternis

as well as the differential equations . The linear electroelastic equations

for small fields superposed on a bias differ from the equations of linear

piezoelectricity because the effective material constants of linear electro—

elasticity have less symmetry than the constants of linear piezoelectricity.

Consequently, a perturbation formulation of the linear electroelastic equa-

tions for small fields superposed on a bias is presented . It is shown that

the effective constants of linear electroelasticity hav~ just the symmetry

required for the condition of the orthogonality of linear electroelastic

vibrations to hold.
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1. Introduction

In vibrating piezoelectric solids small changes in such things as natural

freg.zency and small values of attenuation arising from a variety of causes may

readily and conveniently be determined from a perturbation formulation13 of the

equations of linear piezoelectricity by employing the equation for the first

perturbation of the eigenvalue. This fact is well known and widely appreciated.

The small effects may be due to such things as material viscosity, air loading

of the surface, mass loading and stiffening of the surface due to the presence

of a thin surface film, the electrical conductivity of the film and biasing

stresses, strains and electric fields, which either may be applied or a conse-

quence of such things as changes in temperature. Although the linear piezoelec-

tric equations may readily be employed in the treatment of most of the above-

• mentioned phenomena, they are invalid when the above-mentioned biasing states

are present because the linear piezoelectric equations are not equivalent to

the linear electroelastic equations for small fields superposed on a bias4. The

basic reason for this is that although the linear piezoelectric equations are

the appropriate linear limit of the properly invariant nonlinear e].ectroelastic

equations5
, they are not the appropriate linear limit of the properly invariant

nonlinear electroe].astic equations for small fields superposed on a bias.

In this paper perturbations from solutions of the linear piezoelectric

equations due to the above-mentioned biasing states are treated by means of the

aforementioned linear electroe].astic equations for small fields superposed on a

bias. In the treatment the equations are written as the linear piezoelectric

equations plus the additional terms arising from the bias, and a piezoelectric

perturbation theory is obtained from a Green ’ s function formulation of the

equations of linear piezoelectricity. The derivation is identical with that

given in a recent work2
, but the perturbation terms are different and only

S. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-~~_ L’_S t..~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L . s S.~~~
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perturbations due to biasing states are considered. The small effects due

to the aforementioned other phenomena are expressly not considered here, but

the inclusion of them would be straightforward and may readily be accomplished

after the fact. The resulting equation for the first perturbation of the

eigenvalue, which is also obtained in a completely independent manner withouc

assuming the existence of a complete set of orthogonal eigensolutions, may

readily be applied in the determination of small changes in natural frequen-

cies of vibrating piezoelectric solids subject to various biasing states.

Indeed, the perturbation equation has already been applied6 in the calculation

of the change in velocity of piezoelectric surface waves on y-cut, z-propa-

gating lithium niobate subject to uniaxial biasing stresses. The results of

the perturbation calculation agree so well with complete calculations performed

for the same case that it may be concluded that the perturbation procedure is

every bit as accurate as the complete calculation for the determination of

such quantities. In fact, since the perturbation procedure can readily treat

spatially varying biasing states, for which a complete calculation cannot be

performed , it has a significant advantage over a complete calculation in the

determination of this type of quantity.

Since it is possible for perturbations to arise from the above—mentioned

other phenomena even when a biasing state is present and the piezoelectric

perturbation theory is invalid under such circumstances, an electroelastic

perturbation theory is obtained from a Green’s function formulation of the

linear electroelastic equations for small fields superposed on a bias. This

treatment differs from the previous one in that the terms arising from the bias

are included in the basic equations that must be satisfied, rather than as a

perturbation from the linear piezoelectric equations. In this linear electro—

elastic case the effective material constants have less symmetry than in the 

-— -- -, -fl-—- - - - -— a ~~---- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ -
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linear piezoelectric case, but they have just the symmetry required for the

orthogonality theorem for linear electroelastic vibrations superposed on a bias,

which we need for our perturbation theory, and, of course, the related theorems

of reciprocity and uniqueness. The resulting equation for the first perturba-

tion of the eigenvalue may readily be applied in the determination of small

changes in natural frequency and phase velocity and small values of attenuation

of vibrating biased electroelastic solutions, which arise f rom what we have

termed other phenomena.

2. Linear Electroelastic Equations for Small Fields Superposed on a Bias

Before presenting the equations we briefly introduce some preliminary

terminology and notation. We first note that under the static bias the material

points move from the reference coordinates XL to the intermediate coordinates

and we have

= . (2.1)

Then in the superposed small dynamic motion the material points move from the

intermediate coordinates ~ to the present coordinates y~, and we have

Y~ Y~~(~~ , t) = 
~i

(XL, t) . (2.2)

We consistently use the convention that capital Latin indices, lower case

Greek indices and lower case Latin indices, respectively, refer to the

Cartesian components of the reference coordinates, intermediate coordinates - -

and present coordinates of material points. In this paper Cartesian tensor

notation is used exclusively. A comma followed by an index denotes partial

differentiation with respect to a geometric coordinate, i. e.,
•

I

— V. _______ -
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= 
~~Q/~XL , XL~~ ~~~~~~~ ~

‘i,c~ 
=

+ 

- 

~;i 
= 

~J~’i’ ~
‘i,L = 

~~j/~
XL , XL j  = 

~~L’~~
’i ~ (2. 3)

and we employ the summation convention for repeated tensor indices and the dot
+ 

notation for differentiation with respect to time. Since the dynamic m otion

is small, we may write
- 

y. = ~~~~ + u~ ) , (2.4) -+

- 

where u
B 
is the small mechanical displacement from the intermediate coordinate

to the present coordinate y~ and is a Kronecker delta, which serves to

- translate a vector from the present to the intermediate coordinates and vice

F ~7ersa.

By virtue of (2.1) the small field dynamic equations may use either the
- 

- intermediate coordinates or the reference coordinates X
L 
as independent

variables. Since in the typical situation it is undesirable to measure the

- geometry each time the bias is varied, it is advantageous to use the Xt as

independent variables. Moreover, iz~ the applications envisaged although the

static biasing mechanical displacement of a material point is large compared

with u~, it is nevertheless small, and we may write

-~ 6~~ (X1~ + wL
) , (2.5)

where is a Kronecker delta, which serves to translate a vector from the

- intermediate to the refex.~nce coordinates and vice versa and is required for

notational consistency and clarity because of the use of different indices

to refer to the different coordinates of a material point. In accordance with

+ the foregoing the present electric potential at a material point may be

written

+ ~~~- + + -+ - --~~~—~~~~~~~—~~~~~ 
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(P ( Y~~ t) = tp (X L, t) 
~p (XL

) + 

~~
(XL, t) , (2 .6)

where is the biasing electric potential at a material point and ~ is the

small field dynamic electric potential at the same point.

Since we have used the reference coordinates XL 
as the independent variables

for material points, we take the XL 
rather than the as the independent

+ variables for points of free space not abutting a material boundary. Moreover,

since only the reference position of the material boundary is known, the value

of the electric potential ~ on the free space side of the present position of

the material boundary must be obtained by means of a Taylor expansion about

‘I its value at the known reference position of the material boundary in the

— +~ unknown mechanical displacement (wM + 6
~~~M

h1
~~~

) of the material boundary. Thus 
-

$(y~,t) = 

~~~~~ 
+ $

,L
W
L 
+ 

~~~~~~~~~ 
+ 

~ ,L
W
L 

+ ~
(XL t) , (2. 7)

to first order in the small field variables, and where is the biasing

electric potential immediately on the free space side of the reference position

of the material boundary and is the small field dynamic electric potential

at the same point and for points of free space we have

4 (X
L
, 
t) = ~~~~ (XL

) + 4r (XL, t) . (2.8)

NOW that the meaning of the basic dependent and independent variables

has been explained we are in a position to write the linear electroelastic

equations for small fields superposed on a bias, which take the form4

— 

. 

KL.~1L  
= P U N , 

~L,L 
= 0 , (2 .9)

where
- 

. 
XLV = 

~L~*1c~~~, M +

+ 
~LM~~M ’ 

(2. 10)

~~~~~+~—~~~——~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
.—
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- + and

~L’1M~~ ~L~~M a  + 

~LVMa ’ ~LM 
€LM 

- € LM ,

G = R  = e  + e  (2 .1 1)
2ML~ l1~~~ ML’~’ ML~

C T1 6 + c  E1 + c
- 

} 2L Y M~ LM (a 3L~Y~~~AB AB 2L~YKM ~~, K

~.1 
1

+ 
~LKMa ’Y , K 

- 

~AL~~M~~
’
,A 

+

1 ~~ 2
- 

~ML~VBC E~~ 
- e

~~ Kw K 
- bA P A  +

= ~~~~~~~~ - 

~~~~~~~ 
- 2€ QJ1E~~J , (2. 12)

and
1 1 11 1 1

a 
= ~ C [E

C
E

C 
(XM ~~~ a 

- X
L ~~M, o’~ 

+ E~ (E
~

XL ~
XM a 

-

2 

E
~

XM ~
XL, a~ 

E~ (E
~

XM ~
XL ..~. 

- E
~

XL ~
XM .~,)]

• = J e
0
[E~X~ ~

X
L ~ 

- EaXL a XM ~ 
- E

~y
XM a

XL a l • (2.13) - 

+

and we have taken the liberty of changing the order of the last two indices on

the second and third rank tensors having both Latin and Greek indices from that

employed in Ref.4. Equations (2.9) are the small field stress equations of

motion and charge equation of electrostatics referred to the reference coordi- +

+ nates X .  Equations (2.10) are the linear electrc,elastic constitutive equations

+ 
and Eqs . (2 .11) and (2.12) contain the definitions of the effective coefficients

defined therein. In (2.9) - (2.13) and denote the components of the

+ 
small field Piola-Kirchhoff stress tensor, which is asymmetric , and reference

electric displacement vector4, respectively ; p0 denotes the reference mass
+ 

density, 
~L~ Ma’ ~~~~ 

and 6
LM 

denote the second order elastic, piezoelectric 
+

-‘ . and dielectric constants, respectively, which are the constant~ that occur in

the ordinary linear theory of piezoelectri-~ity . The symbols T~~ and E
~B 

denote

+ the components of the static biasing stress and strain, respectively, and

~ —- ‘ _
~s.~a ++&4~++ + _ . ~+ -~~k - .~~ ..- c I  ‘ ,S~~.a.~~~ +!a . _ & . g _ g  ~~~~~~~~~~~~~~~~~~~~ __ - + + - ~~_ + _~~ +—
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1

J
1 
is the Jacobian of the static deformation. The biasing variables satisfy the

appropriate static equations given in (66) - (72) of Ref.4, or the equivalent

equations using reference coordinates as independent variables , since we are +

interested in small biasing strains only, we have

E
~B 

= 
~~~ 

(w~~~ + 

~
‘B,A~ 

J
1 
~ 1, (2.14)

T
~M 

= 
~I~4~5

w
R S  + e

RI~
cp M , (2.15)

and each X
La 

in (2.13) may be replaced by 6
LCf 

In (2.12) 
~L~~M~~AB’ ~~~~~~

y
~ and k denote the third—order elastic electros rictive third—order
~~~~ 

lML ’~BC

electric permeability and first—order elec troelastic co~ ~tants, respectively,

and e denotes the electric permittivity of free space. For obvious reasons

the notation employed here is designed to be consistent with the notation of

Ref.4. The karets aver many variables have been employed here because we con-

sistently use the reference coordinates as independent variables.

To the foregoing equations we must adjoin the dynamic boundary conditions,

which when the boundary of the body abuts free space take the form

N
L ~ L’1 

- K~~) = ~~ , N
L ~~ 

- 
~~~~~~~ = 0,

= 
~~~~~~~~~~~~ 

+ 
~~~L

W
L 

+ ~I1 (2.16)

where W
L 

and u~ in (2.16)3. respectively, denote the static biasing and small

f ield dynamic components of the mechanical dtsplacentent at the surface of the

solid, NL 
denotes the components of the unit normal to the reference position

of the surface and T is an applied traction per unit reference area. The

free-space dynamic variables and are given by

—- - ——-V - 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

~~~~~~~~



rn. ~~ ~~~~~
— - — .~&

- 

.+ 

~~~~~~~~~~~~~~~~~~~~~~~~ 

- -——-  --— - - V - V -  

8.

f f f
= 

~~~~~~~ 
+ 
9L~,Ma

U
~,M 

+ 

~L~V M ~~,M

(2.17 )

- 
+ where

f 1 11 1 1 11
= J XL c~ o~~~~a ~ 

+ E
~~~

Ea 
- E

6
E6~~

Ô
a.V)~

~L’YM C 
J’XL c2~M, ~

€ o ( E
~

E .V ôaC + 
~~ 
E
~
E
~~
(6
~~

6a~

— 6
~

6aQ + 
~~~~~~~~ ~

~LYM 
J’XL a XM ~€o(E~8a..i - - ~~~~~~~

= J
1
XL a

X
M ~e0

(E~ 6~~ 
-

= J1X € E
1 ~~~~=-  Jl€ , (2.18)

+ L,a o a ,~~’ ~ 
o

In free—space the small field dynamic electric potential clearly satisfies

Laplace’s equation
4
, i.e.,

~,LL 
= 0. (2.19)

When the body abuts another solid insulator rather than free-space, instead of

(2.16) we must have +

-
~~~~ N~~K~~~~= 0 , N,~~)~ = 0 , [u~~~= 0 , ~~J~ = 0 . (2,20)

+ If, on the other hand, the body abuts a perfect conductor, we have

NL
(K
~~

] O , N L
] . 2 , cp C p ,  (2 .21)

where ‘
~L 

in the conductor vanishes, K~~ in the conductor is not given by (2.10),

is purely mechanical and depends on the particular case treated and .2. is the

dynamic electric surface charge density per unit reference area. In the usual

- case of interest ~ will be prescribed and (2.21)2 will determine the surface

+ 
charge density a posteriori.

liii - - - - - + -+  + ~~~~~~~~~~~~~~~ ~~~~~~~~~~~ --- ~- -~~ - + —
~--~----—- ——~
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+ 3. perturbations from Piezoelectric solutions

In this section we obtain the equations for perturbations from solutions of

the linear piezoelectric equations due to a bias f rom a Green ’ s function formu-

lation
2 
of the equations of linear piezoelectricity. To this end we first

write Eqs . ( 2 . 9 ) —  (2.12) in the form

+ ~
n 

= ~~~~ (3. 1)
LV,L L Y,L

~L,L 
+.O

~~L
0, (3.2)

KL.y ~LV M a%, M + eMI4P M ,

‘
~L 

= e
L~~

u
a M  

- €LMCP M’ 
(3.3)

— . L L M a a M  LM ,M ’
t 

,

where the nonlinear terms and are the perturbation terms which depend

on the biasing state W
A B  

and in accordance with (2.12) and (2 .14 ) i.

Since and are the perturbation terms, we are perturbing from the linear

piezoelectric equations and, hence, the equations for the Green ’ s tensor2 may

be written in the form

pw 2
G~~=-  â ( P- Q ) â~ , (3.5)

L 8(P — Q) 8 4 , (3.6)

a
= 
~L~YMC

G
C,M 

+ e
~~~

f M ,

+ 
I 

= ~~~~~~~~~~~~~~~~~~~~ 
- 

~LM~,M ’ 
(3. 7)

where the superscripts a, B = 1-4 , p and Q denote the fixed field point and

variable source point, respectively, 6 is the Dirac delta function, 8~ is the
- - 

. Kronecker delta, G~ and are the mechanical displacement Green’s tensor and

electric potential Green ’s function plus cross terms, respectively. In
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(3,5)  - (3.7) we have assumed that all variables have a time dependence of e~~
t
,

which has been factored out, and we make the same assumptions in (3.1)- (3.4).

Equations (3.1) — (3. 3) and (3.5)— (3.7) are identical with Eqs. (2.1) — (2. 3) ~~4 +

(2. 4) - (2 .6)  of Ref. 2, except for notation . Consequently, except for notation,

Sec.2 of Ref.2 applies here without change. Thus, by following a procedure

identical with the one employed in Sec . 2 of Ref. 2, from Eq. (2.16 ) of Ref. 2 with

the change in notation we may write

U = 

~ W~ ) 
[S N

L ~XLC~ 
- u

C
]
~~C 

(Q) + - cpd~ ~~ ~ ~~o ~~ 
+

+ j 
~~ 

~~~~~ 
+ 

~~~~ 
(Q)]dV~, (Q)] , (3.8)

where w is the eigenfrequency of the p.th eigensolution and +

9~~= u~/N~~), f~~=j ~/N~~), (3.9)

in which u~ and denote the ~th eigensolution functions satisfying (3.1) and 
+

(3,2) in the absence of and arid subject to the appropriate homogeneous

boundary conditions and N~~) may be found from7

J p~u~u~ dV = N~~~) 8~~~, (3. 10)

0 - +

wh ich is the orthogonality condition for piezoelectric vibrations. Thus, g~

+ 
and denote orthonormal eigensolutions of the appropriate homogeneous problem.

in (3.8) denotes the reference surface area enclosing the reference volume V0

and

H k~ = c  g1
~ + eLV L’Y M~t ~,M P~~ 1 ,M ‘ +

= e g~ — € . (3 .11) 
+

+

L LM t+~~~~t , M LM ,M

- + + .  - + _ .  _ _ - ___.__ __. .~__ a -_’ - c — ~~~~—- - -._ _~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~__s+
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We may now obtain the perturbation procedure from (3.8) in the usual way8,

i.e., by letting u (P) be very near one of the g~~ say g~~. Then we may write

g~ (P) + ~~~ ~~(P)g~1,/(w~ 
— w2), (3.12)

where
H = N~~(Icj~~9~~ - ~~~~~ 

+ - p d~ 1 dS0

+ 
~~~~~ 

+ I
~~~~~~~~~~~~~~~ ] 

dVi,, (3.13)

and from (3.8) , (3.12) and (3.13) we have

— 1, (3.14)

which is the equation for the first perturbation in eigenfrequency. If +

+

~~~~~
W

M
_ W , I~ I < < WM, (3.15) —

from (3 .14) we have

= HM/2WM , (3.16 )

for the first perturbation in eigenfrequericy. We have discussed first—order 
~
. 

—

perturbation theory only because that is all we are interested in here. For a

discussion of second—and higher-order perturbation theory see Ref.8. 
—

The equation for the first perturbation of the eigenvalue, i.e., Eq. (3.16), j
is a very important relation that has numerous applications. Although it was

obtained from a Green’ s function formulation by assuming the existence of a +

complete set of orthogonal eigensolutions, this particular relation can readily

be obtained without the use of a Green’ s tensor or, more importantly, a complete -

set of orthogonal eigensolutions. In fact, the existence of only the particular +

unperturbed eigensolution under consideration and a nearby perturbed state is -

required . To see this consider the unperturbed Mth eigensolution, at eigen-

frequency WM~ 
which, f rom (3.1) and (3 .2) , satisfies 

-

--V ~~~~~~~~~~~~~~~~~~~~~~~~ ‘———-—+
-,-- —-- - -- +-.-—---.—-. +——~ - - - -- ~~~~~ ~~~~~~~~~~~~ -~~~-—-~~~~

--~~ -V -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~
, L 

+ p
0
w~u~ = 0, ‘

~~~L 
= 0, (3.17)

along with the nearby perturbed solution at frequency w, which, from (3.1)

and (3.2), satisfies

+ K
~ (L 

+ p0w2u~~= o , 
~L,L +~~L L  

= 0, (3.18) 

1 ~
where it is understood that (3.17) and (3.18) are independent of time. From

(3.17)i and (3.18)
~ 

form the equation

+ ~~~~~~~~~~~ (R
~~I,L + I c

~~,L + 
o 2

)~~~ dv0=0. (3.19)

Performing the usual operations
7
, employing (3.3), (3.17)2 and (3.18)

2 and the

divergence theorem in the usual manner, we obtain

(w2 - w2) S P°u~u~ dv0 = j N~~(~~~ u~~- ~~~~~ ~~~~~~ - dS0
0 0

+ 
~~~~~~~~~~~~~~~~~~~~ 

+ 

~~~~~~ 
ds
0 

(3 20)

Since the perturbed solution is nearby the unperturbed solution, we have

- 

= W
?,~ 

- (U~ J~f < < W
M~ 

U~~ 
- U.~ = 

~~ 
I 11~I << Iu~I . (3.21)

Substituting from (3.21) into (3.20), neglecting products of small quantities

and employing (3.9)— (3.11) and (3.13), we obtain

HM/2wM ,  (3. 22)

which is identical with Eq. (3. 16). However, it should be emphasized that

although Eq. (3.16 ) does not require the existence of a complete set of ortho—

gonal eigensolutions, Eq. (3 .12) does require the existence of such a set.

one consequence of this is that second and higher order perturba tion th.’~ry
8

cannot be obtained from the procedure p:esented in this paragraph. 

- - - +
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Fr om Eq. (3 . 16) (or (3.22)) for the first perturbation in eigenfrequency,

we can obtain equations for the first perturbation in phase velocity and wave-

number by following the procedure outlined near the end of Sec.2 of Ref .2.

The equations are

e = ~~~~~ 6 = 
~
/VM, (3.23)

where

V V M
_ S ,~~~~~~~M

+ 8 , (3.24)

and V
M 

and are the unperturbed phase velocity and wavenumber, respectively,

of the Mth eigensolution.

As an example of the application of (3.13), (3.15) and (3.16) (or (3.22)]

to a specific case consider a piezoelectric solid with traction free surfaces

and for simplicity a sufficiently high dielectric tensor that the normal com- -;

ponent of electric displacement can be taken to vanish. Let the solid be

subject to static biasing stresses, strains and/or electric fields applied in

• such a way as not to affect the homogeneous mechanical or electrical boundary +

conditions determining the normal modes of vibration of the solid. Since the

Mth piezoelectric eigensolution perturbed by the bias is for traction free

boundary conditions and vanishing normal component of electric displacement,

we have

N J CM = 0  N d M = O  (3.25)L L Y  ‘ L L  ‘ 
1

-

and under these circumstances, from (3.13) , we find that HM takes the form

= (ç~~g~ + ~~f M
] dS + J~ ~~~~~~~~~ ~~~~~~~ 

+ .~~~~ L
fM] dv • (3.26)

The quantities NL1c~C 
and NL~~ 

in the surface integral in (3 . 26) are surface

perturbation terms, which are to be determined f rom the Mth eigensolution due

to the presence of the bias as are the terms in the volume integral in (3.26). 

-~-.-~-- + + ,V.--- —--- ~~~~~~~~~~~~~~~~~~~~~~~~ —‘--—--~~~ —-+~.,-.-—-.-- —‘-+.-,-—~—-—-.+-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘- ‘-- ‘--‘  ~~~ — - ~~- —
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For traction free and zero normal component of electric displacem ent boundary

conditions in the presence of the bias, we have

(3.27)

which with (3.26 ) and the divergence theorem yields

- 5 (i~~9~’, L + 

~~~~~ 
dv0, 

(3.28)

which is the form taken by the perturbation integral in this special but

important case. In (3. 28) and take the values given by the Mth ortho-

normal piezoelectric eigensolution f in the presence of the bias and, conse-

quently, from (3.4) we have

= + eRLCf R,

= e~1~p~~~ 
- 

~LR~,R 
(3. 29)

the substitution of which in (3 .28) yields

- + ~~~~~~~~~~~~ - 

~LR~,L~~
’
R~ 

dv
0
. (3.30)

Thus, if the piezoelectric eigensolution and bias are known, the perturbed

frequency w can be determined from (3.15) , (3.16 ) and (3.30).

4. Perturbations from Electroelastic Solutions

In this section we obtain the equations for perturbations from solutions

of the linear electroelastic equations for small fields superposed on a bias

f rom a Green ’s function formulation of the equations of linear electroelasticity.

To this end we first write Eqs . (2.9) and (2.10) in the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a~~~~~~~~ t- _ ~~~~~~~~~~~~~~~~~~~~ -. — ~~~~~ - -+ ~~~~~~~~~
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+ XL~Y L  ~ ~~~~ (4.1)

~~~~~~~~~~~~~~~~ 
(4. 2)

~L~Y ~L~YMC~
’C,M + 

~MLSP,M~

9LMC
U

C,M + 

~tM~,M ’ 
(4.3)

and note that the definitions in (2.11) - (2.13 ) hold . In (4.1) and (4 .2) we

have taken the liberty of introducing the extra quantities and ~~~ , which

denote mechanical and electrical perturbation terms, respectively, and can,

in particular, represent the influence of small material viscosity. From

(2 .1l) i, (2. 12) 1, 3 and (2.13) we note that

?L~ 4C~~~~ MCL Y ’ R = R ~~~. (4. 4)

Before presenting the Green’ s function formulation of the linear electro—

elastic equations for small fields superposed on a bias, we show that the

vibrational eigensolutions satisfy an orthogonality condition because we need I -
~

this result to obtain the full perturbation theory. To this end consider two

eigensolutions of (4.1) and (4.2) minus the perturbation terms containing

and 2~, one solution with eigenfrequency and the other with w .  They

satisfy the respective equations

1,L 9 ~~~~~~
0 , 1

~~,L 0 , (4. 5)

L + = 0, 
~L, L 

= 0. (4.6)

Prom 
~~~~~~ 

and (4 .6)
~ 

form the equation

• 

~~~~~~~~ L + p O 2 P •
) U~ - (~~~~~~~~ L + 

O 2 V )J~] dV 0 . (4. 7)

0

- - ~~----- - - -———- —S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
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Performing the usual operations7
, employing (4. 3) , (4. 

~~~ 
and (4.6) 2 and the

divergence theorem in the usual manner, we obtain — -

N
L 

[i
~~ uZ - + - — (w~ - w~) p°u~ u~~ dV0 . (4.8) —

~ 
-J

It should be noted that (4 .8) can readily be obtained even if intermediate

surfaces of discontinuity exist. Clearly, from (4.8) , for homogeneous boundary

conditions, we have

J p°~~u~ dV0 - N~~ ) 6~~~, (4 .9)

0 1 - ’
which is the orthogonality condition for linear electroelastic vibrations

superposed on a bias .

Since and .I~~~ are perturbation terms, the equations for the Green’s

tensor9 for the linear electroel.astic equations for small fields superposed

on a bias may be written in the form

cI,L + 

~~~~~~~~~~~~~~~~ 

(4.10)

~L,L 
8 (P—Q) 6~ ‘ 

(4.11)

or
~ G G + G ~LY 1LNMC C,M 2ML~(,M

= 

~LMCGC, M + 

~LM~,M ’ (4.12)

where equivalent quantities are defined as in the wording following Eq. (3 .7) .

In (4.10) - (4. 12) we have assumed that all variables have a time dependence e
1

~
)t

.

We now make the same assumptions in (4 .1) - (4 .3) and in the usual manner,

f rom (4.1) and (4.10) we form

~ 
~~~LY,L + XLV,L 

+ p0w2u~ )G~~_ (Tc~ L + P
Ow2

G~ + 6 (P- Q)6~~)u .~,]dV0 (Q) , (4.13) 

+ . + ~~~+~~~- + -..~~~~ ~~~~~~~~~~~~~~~~~~~~~~ + V . + +
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where 
~t = 1 - 3 and all variables in (4.13) have spatial dependence only . Per-

forming the usual operations7
, employing (4. 2) , (4. 3) , (4 .11) and (4.12 ) and

the divergence theorem in the usual manner , we obtain

u (P) = $ NL
(
~~ •YG

~ 
- ~~~~~~~ + 

~~~~ 
- 

~~~~~~~p1 
~~~~~~~~

so 
+ (~~~ j, LG

~? +~~~, L~~
3 dv ~~~ 

(4.14)

Similarly, from (4.2) and (4 .11) we form

$ E (.&L,L
+I5

~,L
)f
4 

~ L,L
+6(P Q))

~~ 
dv0(Q), 

(4.15)

V0

and performing the usual operations7
, utilizing the divergence theorem and

employing (4.1) , (4.3) , (4 .10) and (4.12) , we obtain

~~(P) = J NL [
~ L

f 1_
~~~~

+ ~~~~~~~~~~ dS (Q )

+ ii’ 
~~~~~~ 

+ K _
~~~L

GYl dv0 (Q) - (4.16 )

Equations (4.14 ) and (4.16 ) constitute the Green’ s function (or tensor) formu-

lation of the linear electroelastic equations for small fields superposed on

a bias. It turns out that for our purposes, although we envisage use for (4. 14)

we do not envisage use for (4. 16) because of the particular type of perturba-

tion problem in which we are interested.

We now assume that a complete set of eigensolutions ~~~, ~~ exists and

define orthonormal eigensolutions to our eigenvibration problem by

~~~= U~/NQJ), ~~~=~ c~/N~~)
. (4.17)

We now expand the mechanical 4isplacement Green’ s tensor G~ and electric

potential Green’ s vector f~ in the forms 

_ V.V. ~+ & V  ~~~~~~~~~~~~~~~~ ,_, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - +_  - - - -
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• 

G~~~~~~= E ? j~~~g~~~~ , f~~ =~~~ r ’1’ , (4.18)

where and constitute orthonormal solution functions satisfying the

appropriate homogeneous form of (4.1) - (4.3) subject to the appropriate homo-

geneous boundary conditions. substituting from (4.18) into (4.10), employing

(4.12) and the homogeneous form of (4.10) for every ~ , contracting with

integrating over V0 and utilizing (4.9), we obtain

(4.19)

Substituting from (4 .18) and (4.19) into (4 .14) , we obtain

u = E ~~~(p ) H / ( W ~ - w
2
), (4.20)

where

= N~(~~~~~ (Q) 
- u.~,k~~~(Q) + I8

~L~~~~~
(Q’ - tpâ~~(Q)] ds0 (Q)

+ S ~~~~~~~~~~ 
+ 

~~~~~~~~~ 
dv0

(Q) , (4.21)

and

= 

~L’1M C ~~ ,M + 9~1r~y~~M ’

= 

9LMC~~ , M + 

~LM~~M (4.22)

The perturbation procedure is obtained from (4.20) by following the procedure

outlined in Sec.3, after Eq. (3.11), and the resulting equation for the first

perturbation of the eigenvalue takes the form

H~/2w~~. (4. 23)

Again , as in Sec . 3 and by following a procedure directly analogous to the one

employed in obtaining (3.22) , it may readily be shown that (4. 23) can be ~~~~~
-

tam ed without the use of a Green’ s tensor or a complete set of orthogonal

eigensolutions.

- - - ~~~~~~~~~ - + ~~~~~ + - - - +~~~~~~~~~~ + L~~~~~ —~~~ -~~~~~~ - - -
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